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Abstract 

The transition process induced by the 
interaction of an isolated roughness with 
acoustic disturbances in the free stream is 
numerically investigated for a boundary layer 
over a flat plate with a blunted leading edge at a 
free stream Mach number of 3.5. The roughness 
is assumed to be of Gaussian shape and the 
acoustic disturbances are introduced as boundary 
condition at the outer field. The governing 
equations are solved using the 5'h-~rder accurate 
weighted essentially non-oscillatory (WENO) 
scheme for space discretization and using third- 
order total-variation-diminishing (TVD) Runge- 
Kutta scheme for time integration. The steady 
field induced by the two and three-dimensional 
roughness is also computed. The flow field 
induced by two-dimensional roughness exhibits 
different characteristics depending on the 
roughness heights. At small roughness heights 
the flow passes smoothly over the roughness, at 
moderate heights the flow separates downstream 
of the roughness and at larger roughness heights 
the flow separates upstream and downstream of 
the roughness. Computations also show that 
disturbances inside the boundary layer is due to 
the direct interaction of the acoustic waves and 
isolated roughness plays a minor role in 
generating instability waves. 

Introduction 

Transition from laminar to turbulent state in 
shear flows occurs due to evolution and 
interaction of different disturbances inside the 
shear layer. Though there are several 
mechanisms and routes to go from a laminar to a 
turbulent state, all of them generally follow 
these fundamental processes: 

9 Receptivity 

Linear instability 

Nonlinear instability and saturation 

Secondary instability and breakdown 
to turbulence 

In the receptivity process, the unsteady 
disturbances in the environments such as 
acoustic and turbulence interact with the 
inhomogeneities in the geometry such as 
roughness and generate instability waves inside 
the shear layer. In quiet environments, the initial 
amplitudes of these instability waves are small 
compared to any characteristic velocity and 
length scales in the flow. In the second stage, the 
amplitudes of these instability waves grow 
exponentially downstream and this process is 
governed by the linearized Navier-Stokes 
equation. Further downstream, the amplitudes of 
the disturbances become large and the nonlinear 
effects inhibit the exponential growth and the 
amplitude of the waves eventually saturate. In 
the next stage, this finite amplitude saturated 
disturbances become unstable to two- and/or 
three-dimensional disturbances. This is called 
secondary instability and beyond this stage the 
spectrum broadens, due to complex interactions 
and further instabilities, and the flow becomes 
turbulent in a short distance downstream. In this 
paper, the receptivity process induced by an 
isolated roughness and acoustic disturbances in a 
supersonic boundary layer with a free stream 
Mach number of 3.5 is investigated. 

Predicting transition onset and transition end 
points accurately, modeling this transitional 
region and modeling the turbulence region are 
the major difficulties in computing the 
aerodynamic quantities accurately using the 
CFD codes. Our understanding of different 
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instability mechanisms and of different 
transition processes in shear layers have greatly 
improved in the last several decades. However 
the transition prediction methods have not made 
much progress. The main difficulty is due to the 
nature of the transition process itself. The 
transition process mainly depends on the 
boundary layer characteristics and on the 
frequency and wave number distributions of the 
disturbances that enter the boundary layer. The 
laminar boundary layer profiles can be 
computed easily. The problem is computing, 
predicting or prescribing the initial spectral, 
amplitude and phase, distribution of the 
disturbances inside the boundary layer. As we 
discussed earlier, the initial disturbances are 
generated by the interaction of the free stream 
unsteady disturbances and the roughness on the 
surface. These two are stochastic in nature and 
are difficult to quantify in general. In any new 
transition prediction strategy, one should 
quantify these two quantities and should 
determine what is the minimum amount of 
information necessary to predict the transition 
onset accurately. The objectives of this research 
work are to answer some of these questions and 
eventually to come up with an improved 
transition prediction method. 

There are numerous investigations conducted on 
the interaction of acoustic waves with 
supersonic boundary layers. Mack ( 1976), 
Gapanov ( 1977) investigated the interaction of 
acoustic waves with a supersonic boundary layer 
at finite incident angles using inhomogeneous 
stability equations. One important finding was 
that due to the interaction, the acoustic waves 
excite disturbances inside the boundary layer, 
which are much larger than that in the free 
stream. Gapanov and Smorodsky (1999) studied 
the interaction of streamwise acoustic waves 
with a non-parallel boundary layer. The analysis 
and the calculations showed that the 
disturbances inside the boundary layer reach 
significant values compared to that in the 
outside. It was also observed that there exists a 
critical Reynolds number where this excitation is 
the highest. Fedorov and Khokhlov (1991) 
investigated using asymptotic theory the 
excitation of first and second modes by the 
acoustic waves near the leading edge region. 

Gapanov (1993) showed that the energy is 
transmitted to the T-S waves near the critical 
region where the ratio between the reflected 
waves and the incident wave is the largest. There 
are not many numerical calculations performed 
to investigate the interaction of acoustic waves 
with a flat plate including bluntness. Since there 
are forced disturbances and the modal 
disturbances what are the relative magnitudes of 
them and how far the forced disturbances persist 
are not very well understood. 

There were several transition experiments 
performed at NASA Langley in the Mach 3.5 
Supersonic Low-Disturbance tunnel. Boundary- 
layer transition data on a flat plate and on a 
cone, and free stream noise levels and the power 
spectral distribution of the free stream noise are 
presented in Chen et. a1 (1988). As a first step, 
the computations are performed for the same 
conditions as in the experiment. An isolated two 
and three-dimensional Gaussian shaped 
roughness is placed near the neutral stability 
region and the steady flow field induced by them 
are investigated. Secondly the interaction of the 
two dimensional acoustic disturbance with a 
blunted semi-infinite plate with and without 
two-dimensional roughness element located near 
the neutral point are investigated to identify the 
effect of acoustic incident angle and the 
roughness in receptivity process in a supersonic 
boundary layer. A schematic diagram qf the 
computational set up is depicted in figure 1. 

Governing Eauations. 

The equations solved are the three-dimensional 
unsteady compressible Navier-Stokes equations 
in conservation form 

d d - Qi + - ( Fji - Fvji) = 0. 
dt  dXi 
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I- 

UTlj  + 
[ F,] = 

Here (x,y,z) are the Cartesian coordinates, (u ,v 
,w) are the velocity components, p is the density, 
and p is the pressure. E is the total energy given 
by 

E = e +  7 

u2 + v2 + w2 
3 
L 

e = c ,T ,  p=pRT. 

Here e is the internal energy and T is the 
temperature. The shear stress and the heat flux 
are given by 

The viscosity (p) is computed using 
Sutherland's law and the coefficient of 
conductivity (k) is given in terms of the Prandtl 
number Pr. The variables p, p, T and velocity 
are non-dimensionalised by their corresponding 
reference variables p,, p,, T, and 
respectively. The reference value for length is 
computed by ,/=, where x 
location of the beginning of the computational 
domain from the leading edge in the streamwise 
direction. For the computation, the equations are 
transformed from physical coordinate system (x, 
y, z) to the computational curvilinear coordinate 
system (&q,<) in a conservative manner and 
the governing equations become 

is the 

d -  d -  -Qj + -(qj - cjj) = o. 
dt dXj 

The components of the flux in the computational 
domain are related to the flux in the Cartesian 
domain by 

Solution Algorithm 

The governing equations are solved using the 
Sh-order accurate weighted essentially non- 
oscillatory (WENO) scheme for space 
discretization and using third-order total- 
variation-diminishing (TVD) Runge-Kutta 
scheme for time integration. The WENO and the 
TVD methods and the formulas are explained in 
Shu (1 992) and the application of EN0 method 
to N-S equations is given in Atkins (1991). The 
solution method used is described in an earlier 
paper Balakumar et. al. (2002). 

The height distribution of a rough surface is 
generally determined using a Gaussian 
probability distribution and a correlation length 
(Saillard and Sentenac 2001). Before a general 
rough surface is considered, in this paper the 
disturbances induced by isolated roughness are 
studied. The roughness is assumed to be of 
Gaussian shape in the form 

where h is the height of the roughness, o1 and 
o2 determine the width of the roughness in the 
streamwise and spanwise directions and x=xo is 
the location of the roughness. The grid is 
generated by transforming the surface into a 
straight line using the expression 

where y = H(x) is the 
computational domain. 

outer boundary in the 
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The acoustic field that impinges on the outer 
boundary is taken to be in the following form. 

Here a,, pa,, E,, are the acoustic wavenumber, 
and o is the frequency of the acoustic 
disturbance. 

First the flow field induced by two and three- 
dimensional isolated Gaussian shaped roughness 
elements of different heights are computed. 
Secondly, the disturbances generated by the 
interaction of two-dimensional acoustic 
disturbances with a blunted flat plate with and 
without roughness are computed. The flow 
parameters are given in Table 1. 

Table 1. 

Flow Darameters for the wind tunnel model. 

Freestream Mach number M, = 3.5 

Freestream Reynolds number Re, = 12* 106/ft 

Freestream density pm = 2.249" 

Freestream pressure p, = 187.74 lbf/ft2 

Freestream velocity U, = 2145.89 ft/s 

Freestream temperature T, = 156.42 OR 

Free stream kinematic viscosity Y, =1.7882* 

lbm/ft3 

ft2/s 

Wall temperature = Adiabatic condition 

Prandtl number Pr = 0.72 

Ratio of specific heats y = 1.4 

Leng th  s c a l e  /% = 5.892" 10-5ft. 

(xo = 0.5 in.) 

The boundary layer thickness at X=l in. 
.O 1275 in. 

Non-dimensional frequency F = 1 * 
kHz 

= 4 1 .O 

The non-dimensional frequency F is defined as 

where f is the frequency in Hertz. 

The grid is generated using analytical conformal 
mapping formulae. The grid is clustered in the q 
directions close to the wall and near the critical 
layer region and is also clustered in the 5 and 5 
directions close to the roughness and is shown in 
figure 2. We present the results for the 
parameters xo =1 in., (7, = (7. = .25. here x is 
the location of the roughness element from the 
leading edge. 

Linear instabilitv 

As a prelude for future reference, in figure 3 the 
linear stability results for the boundary layer 
over a flat plate is presented. The figure depicts 
the neutral stability diagram in (Re, F), (Re,a) 
and (Re, p) planes for different wave angles 0, 
45, 60 and 70 degrees. The figure also shows the 
N-Factor curves and the growth rates for the 
most amplified disturbances. The critical 
Reynolds number is about 193 and this occurs 
for an oblique wave of angle 60 degrees. The 
most amplified frequency is about F= 1 .O- 1.25e- 
5 and the most amplified wave has a spanwise 
wavenumber of p=. 025 and this corresponds to 
about .178 inches in dimensional units and is 
equivalent to about 14 boundary layer 
thicknesses. It is also observed that at higher 
Reynolds numbers Re > 1000, only the low 
frequency disturbances F c 3.E-5 are unstable. 
This implies that acoustic disturbance with 
frequencies less than 120 kHz may be the 
relevant frequency range for generating 
instability waves inside the boundary layer. The 
frequency of the most amplified wave is about 
40 kHz. The maximum N-factor at X=12 in, 
(Re = 3464) is about 8.6. 

Steadv flow due to the roughness. 
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In these computations, an isolated two and three- 
dimensional roughness are placed at &=l in. 
from the leading edge. The Reynolds number at 

this location is /: 3 - - 1000. and the 

parameters in the Gaussian 
distribution 0, = a2 = 0.25 . This gives the 
width of the roughness element as half the 
boundary layer thickness. 

Two-dimensional rowhness. 

Figures 4-8 show the results for the two- 
dimensional roughness elements. The 
computations are performed for different 
roughness heights h/6,=1/16, 1/8, 1/4 and 112. 
Figure 4 shows the contours of density inside the 
boundary layer and in the inviscid region for two 
cases h/6 = 1/16 and 1/2. Steady solutions are 
obtained in all the cases and there is no vortex 
shedding observed. For h/6 = 1/2, in the inviscid 
region the results clearly show a compression 
wave in the front, an expansion wave in the 
middle and another compression wave at the 
end. As expected these waves are weaker for the 
small roughness h/6=1/16 compared to h/6=1/2. 
Figure 5 shows the contours of the normal 
velocity (V) and the streamline patterns inside 
the boundary layer near the roughness for 
roughness heights h/6 = 1/16, 1/8, 1/4 and 1/2. 
The interesting observation is the type of 
separation induced by the roughness. At small 
roughness heights h/6 =1/16 there is no 
separation observed and the flow goes over the 
roughness smoothly. For roughness heights 111 6 
< h/6 < 1/4, flow separates downstream of the 
roughness. The flow separates slightly 
downstream of the peak of the roughness and for 
h/6 = 1/8 it reattaches at about 4 roughness 
heights downstream of the peak. For roughness 
heights h/6 > 1/4, the flow separates in the 
upstream and downstream of the roughness. The 
length of the separated regions increases with 
roughness height and for h/6 = 1/2, the upstream 
separated region is about 15h and the 
downstream region is about 8h. 

Figure 6 shows the variation of the normal 
density in the streamwise direction (x) at 
constant heights y/a0 = 1 and 2 for different 
roughness heights h/b0 = 1/16, 1/8, 1/4, 1/2. As 
observed earlier, a smooth compression in the 
upstream, a sharp and a strong expansion fan 
across the roughness peak and a strong 
compression downstream are observed. The 
strength of these waves increases with 
increasing heights. In figures 7 and 8, the 
velocity profiles at different streamwise 
locations relative to the roughness location are 
presented and they are compared with the 
unperturbed Blasius velocity profiles. Figure 7 
shows the difference between the velocity 
profiles induced by the roughness and the 
Blasius profiles at the upstream streamwise 
locations ( X - X ~ ) / ~ ~  = -16, -4, -2 and at the 
downstream locations (x-x0)/6, = 2, 4, 16. The 
first observation is that the modification to the 
boundary layer is more in the region upstream of 
the roughness than in the downstream of the 
region. The change in maximum velocity is 
about 1% at the upstream location ( X - X ~ ) / ~ ~  = -2 
and is about 0.3% at the downstream location (x- 
xJ6, = 2. The shape of the modification to the 
velocity profiles is also different from the 
upstream to the downstream. In the downstream, 
the velocity is reduced more near the wall and 
near the outer part of the boundary layer than in 
the middle of the boundary layer and this may 
have a strong influence in the stability 
characteristics. Figure 8 shows the velocity 
profiles and the comparison with the Blasius 
profiles for the roughness h/ljO = 1/2. Again the 
modification is larger in the upstream region of 
the roughness about 40% at (x-x0)/6, = -4 
compared to that in the downstream region 
which is about 15% at (x-x,)/6, = 4. The 
difference from the Blasius profiles decreases 
with increasing distance from the roughness and 
it is less than 1 % at (x-xo)/a0 = 20. 

Three-dimensional rouphness. 

Figures 9 and 10 show the flow field induced by 
three-dimensional roughness of heights h/6 = 
1/16 and 1/8. In the spanwise direction periodic 
boundary condition is applied. The wavenumber 
in the spanwise direction is p=.025, which 
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correspond to the most, amplified disturbance. 
Figure 9 shows the streamline patterns and the 
contours of the density in the (x-y) plane at z=O. 
In these cases also, steady solutions are obtained 
and no vortex shedding is observed. For the 
roughness height h/6,= 1 /8 a small recirculation 
region is observed downstream. In the three- 
dimensional case the compression and the 
expansion waves are weaker compared to the 
two-dimensional case. Figure 10 shows the 
contours of the spanwise velocity component 
(w) in the (y-z) planes at different streamwise 
locations relative to the roughness location, (x- 
x,)/6, =-2, O., 7.5 and 190. for the roughness 
height h/6,=1/16. Figures lO(a-c) show the flow 
field near the roughness height and the figure 
10d shows the results far downstream from the 
roughness. The maximum spanwise velocity is 
about .02 and within about two boundary layer 
thicknesses upstream and ten boundary layer 
thicknesses downstream the velocities are 
reduced by two orders of magnitude. Figure 10d 
shows the flow field induced by the roughness in 
the inviscid part of the flow. Due to the periodic 
and symmetric boundary conditions at the 
boundaries the Mach waves radiated in the 
spanwise directions bounce back and forth 
inside the domain and this is clearly seen in 
figure 10d in the outer part of the flow field. 
This made the convergent to the steady state 
very slow. 

Acoustic waves. 

The linearized Euler equations in a uniform 
mean flow are: 

2 + u,- ap + Po- JU + po dv -+Po- dw = 0, 
dt dX dx dy dZ 

dU ad dP 

6% h a p  
Po + POUO = -- 

dy' 
av h a p  

P o ~ + P o u o ~  =-z, 

P o - + P o u o ~ = - ~ ~  dt 
dT + pouocp - dr = - dP + u, - 7  dP 

dx dt dX POCP 

P, = p,RT,, 
p=p,RT+pRT, .  

The solution of this system can be written as 

1 

Here the pressure p is in the form 

The dispersion relation among the wavenumbers 
a,,, pa,, E,, and the frequency cr) is given by 

For zero sweep acoustic disturbances E,,=O, the 
wavenumber a,, can be expressed as 

cos e,. 
a,, = (U, cose,. 2 a,) 
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e, 
0 

5 

10 

20 

' &L is the incident angle and Here 8,. =tan- 

for pa, < 0 the plate is radiated from above and 
for pa, > 0 the plate is radiated from below or 
represents the wave which is reflected from the 
plate (figure 11). The plus sign corresponds to 
the fast moving wave and the minus sign 
corresponds to the slow moving wave. The 
c o r r e s p o n d i n g  p h a s e  s p e e d s  a r e  

1 

. The wavenumber of the fast C=U0*- a0 

cos 8,. 

E,=O.O ~,,=.025 

.O 1237 .O 1757 

.O 1239 .O 1758 

.O 1245 .O 1762 

.O 1270 .O 1780 

0 
moving wave is a,, < and for the slow 

uo + a0 
0 

moving wave a,, > - and the incident 
u0 -a, 

angle is limited by 8, <COS 

F=l.25E-5 the wavenumbers of the fast moving 
and slow moving waves are aac < 0.00687 and 
a, > 0.01237 and the incidence angle of the 
slow moving wave is limited to 73.39 degrees. 
The wavenumber of the acoustic disturbances 
a, for different incident angle e, is given in 
Table 2 for two different spanwise wavenumbers 
ex .  

Table 2. 
Values of a,. for different inclination angle 

The variation of the wavenumber awith the 

Reynolds number ,/F for a two- 

dimensional p=O and a three-dimensional 

p=0.025 instability waves are plotted in figure 
12. The wavenumber for the two-dimensional 
wave decreases from .0124 at a Reynolds 
number of 220 to .0119 at a Reynolds number of 
2000. For the three-dimensional disturbance it 
decreases from .01775 at a Reynolds number of 
190 to .01285 at a Reynolds number of 2000. 
The Reynolds number at the neutral points is 
820 and 610 respectively for the two and three- 
dimensional disturbances and they are also 
marked in figure 12. In this figure the range of 
the acoustic wavenumber a,, for the two and 
three-dimensional acoustic waves are also 
depicted. It is seen that perfect matching in the 
wavenumbers occur at very low Reynolds 
number range where the disturbances are 
marginally stable. For the unit Reynolds number 
of 12*106, Reynolds number of 200 is located at 
.04 inches from the leading edge of the plate. 
Hence there may be strong generation of 
instability waves in the nose region where the 
bluntness effects will be important. In the 
neutral and unstable region the acoustic and the 
instability wavenumbers do not match and some 
tuning must occur due to nonparallel effects of 
the boundary layer or  due to some 
inhomogenities on the surface such as rough 
nesses. In this paper the interaction of the 
acoustic waves with the boundary layer with and 
without roughness in the neutral and unstable 
region is investigated. 

Acoustic waves and the continuous spectrum 

The unsteady flow field in a boundary layer 
consists of all the discrete eigensolutions and the 
continuous spectrum, which appears because the 
domain is unbounded and the linearized stability 
equations admit solutions that are bounded at 
infinity. The details about the derivation and the 
computation of the discrete and the continuous 
spectrum are given in Balakumar and Malik 
( 1992). For a supersonic boundary layer, there 
exist seven branches of the continuous spectrum 
in the complex wavenumber space. Two of them 
are the fast and slow moving acoustic waves. 
Hence the free-stream acoustic disturbances 
enter the boundary layer through the continuous 
spectrum. 

7 
American Institute of Aeronautics and Astronautics 



AIAA 2003-3589 

The solution of the linearized stability equations 
in the free stream can be written as 

8 + = 2 Ciq, erIY, 
i = l  

where qi (i=l,S) are column vectors and 

A, = 
.. 

L J 

b22 = a2 + 6' - Re(a - ~ r ) ) ~  

5 -Re+ i(a - m)yM2 
4 

Re(a - a ~ ) ~ { :  - Pr} 

-Re+ i(a -w)yM2 
4 

b23 = 3 9 

b,, = -i(a -w)(y - l)PrM2 Re, 
b,, = i(a - w)Pr Re+ a* + p'. 

The continuous spectrum in the a-plane are 
determined by solving these equations with 

A, = - ~ L I ~ ,  a3 = -a3o, a4 = - A ~ ,  

where 0 5 &o,&o,& s 00. The continuous 
spectrum correspond to acoustic waves are 
obtained from 

2 
A4 = -A4 = -P 

In the limit of large Reynolds number this 
equation takes the form 

- p 2  = a2 + p2 - (a - o12 M ~ .  

This is same as the dispersion relation for the 
acoustic waves and the inviscid continuous 
spectrum for a two-dimensional disturbance P=O 
is given by 

Lr) 

1 '  a =  
1 2  

McosO, 

The eigenfunction corresponding to the 
continuous spectrum is obtained by solving the 
linearized stability equations with an 
inhomogeneous boundary condition at the far 
field. Keeping only the bounded solution at the 
far field and discarding the exponentially 
growing solution, the solution in the far field 
corresponding to the acoustic wave continuous 
spectrum takes the form 

The first three terms in the right hand side 
represent the exponentially decaying solution 
and the last two terms represent the oscillatory 
acoustic disturbances. Between the last two 
terms, the first term is the incident acoustic wave 
and the second term is the reflected acoustic 
wave. Hence by fixing the amplitude of the 
incident wave, for instance the amplitude of the 
pressure of the incoming wave is selected as 
C,q4, = po,  the coefficient 
Since there are eight equations with four 
unknowns C , ,  C,, C3 and C5 , eliminating Cl ,  Cz, 
C3 and C5 the necessary four inhomogeneous 

C, can be fixed. 
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. 

boundary conditions at the far field are obtained. 
After the eigenfunction is solved for, the values 
of C,, C2, C3 and C5 can be calculated, 
especially the amplitude and the phase of the 
reflected acoustic wave C5 can be inferred. 

Figure 13 shows the amplitude of the coefficient 
of the reflected wave C5 as a function of the 
incidence angle at different Reynolds numbers 
for a two-dimensional and three-dimensional 
acoustic wave. For a two-dimensional wave it is 
seen that at low Reynolds numbers the reflection 
coefficient is very large at small incident angles. 
It is about 27 at 3 degrees at a Reynolds number 
of 100 and it decreases with increasing Reynolds 
numbers. For three-dimensional acoustic 
disturbances the maximum reflection coefficient 
occurs at larger incident angles compared to the 
two dimensional case. In figure 14, the 
amplitude of the density fluctuations obtained by 
solving the inhomogeneous problem with the 
acoustic forcing at the free stream is presented. 
The results show the distribution for two 
incident angles 1.5 and 10 degrees at two axial 
locations 0.1 and 4.0 inches from the leading 
edge. The first observation is that with 
increasing Reynolds number the direct acoustic 
response is decreasing and the second is that at 
the larger incident angle of 10 deg. the 
disturbance inside the boundary layer is an order 
of magnitude larger than at the small incident 
angle of 1.5 deg. Since the low Reynolds 
numbers occur very close to the leading edge, 
the bluntness effect and the non-parallel effect 
will influence these results. 

As it is discussed in the introduction, the 
instability waves are generated inside the 
boundary layer by the free-stream disturbances 
and the roughness on the surface. Since the 
acoustic disturbances have the wavelengths in 
the same range as the unstable disturbances, the 
acoustic disturbances itself may induce the 
instability waves by interacting with the growing 
boundary layer. Hence to investigate the effects 
of the acoustic and the roughness calculations 
are performed with and without the roughness 
elements. 

Interaction of two-dimensional acoustic 
waves with a boundarv laver. 

The model consists of a semi-infinite flat plate 
with a blunt leading edge. The leading edge is 
modeled as a super ellipse of the form 
(x-a14 y 2  

a4 b2 
+-=l. 

Here b is the thickness of the plate and in 
accordance with the experiment it is taken as 
.001 inches. The aspect ratio a/b is taken as 10 
hence the blunt leading edge is joined with the 
straight portion of the plate at x=. 01 inch, which 
is at a Reynolds number of 100. 

Figure 15 shows the meanflow density contours 
computed using the WEN0 code. Figure 14a 
shows the entire domain and figure 14b shows 
the flow field near the leading edge. The leading 
edge shock is located approximately at .0002 
inches, which is 1/5 leading edge thicknesses 
upstream. Computations are also performed with 
an isolated two-dimensional roughness element. 
The roughness is located at x=l in. (. 

(JR,- e - 1000) and the height of the roughness 
is h=6/16. Figure 16 (a, b) show the density 
contours including the leading edge shock and 
the Mach wave originating from the roughness. 
The flow field near the roughness is same as that 
computed earlier. The density profiles at x=.O 1, 
.05, . l ,  .5, l., 3. inches. (& = 100,224,316, 
707, 1000, 1732 ) in the similarity coordinates 
are plotted in figure 17a. In figure 17b, the same 
profiles are plotted in similarity coordinates. The 
Blasius similarity profile is also included for 
comparison. It is seen that very close to the 
leading edge, there exists a strong shock and the 
compression expands over the leading edge and 
becomes weaker away from the nose region. The 
boundary layer profiles slowly approach the 
similarity profiles and even at X=3 in., the outer 
part of the profiles did not merge with the 
similarity profile. 

After the mean flow is computed two- 
dimensional acoustic disturbances are 
introduced at the outer boundaries. The 
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computations are performed at different 
incidence angles 0, 1.5, 10, and of 30 degrees 
and the non-dimensional frequency is F=l.25E- 
4. The amplitude of the acoustic wave is 
pa, lpm = .001. 

Figures 18-21 show the results for the incident 
angle of 0 degrees with the roughness element. 
Figure 18a shows the contours of the density 
fluctuations in the whole computational domain 
and figure 18b depicts the results inside the 
boundary layer. Figure 19 shows the maximum 
density fluctuations along the X direction with 
and without the roughness. First observation is 
that the roughness did not introduce any 
difference in the generation of disturbances 
inside the boundary layer compared to that 
generated by the acoustic disturbances alone. 
Hence to the first order, the disturbances inside 
the boundary layer are due to the direct 
interaction of the acoustic disturbances with the 
boundary layer. In figure 20a, the distribution of 
the amplitude of disturbances obtained from the 
simulation is plotted at different axial locations 
x= .5, . l ,  3. inches. (&= 707, 1000, 1732) 
are shown for zero incident angles. The 
eigenfunctions obtained from linear stability and 
from the continuous spectrum are also included 
for comparison. The question is whether the 
disturbances inside the boundary layers are the 
eigenmodes or the disturbances forced by the 
acoustic waves. The eigenfunctions distribution 
obtained from the linear stability results and 
from the continuous spectrum are similar in this 
region and further analysis is needed before any 
conclusion is made. An important observation is 
that the disturbances are generated very close to 
the leading edge region and after that they 
continues to grow. Figure 21 shows the 
maximum density fluctuations for different 
incident angles 0, 10 and 30 degrees. It is seen 
that the disturbances generated inside the 
boundary layer at 0 and 10 degrees do not 
depend on the direction of the acoustic wave. 
This may be due to the symmetry of the 
problem. The acoustic waves are coming from 
the top and the bottom sides of the plate and 
since the disturbances are generated near the 
leading edge of the plate, the incidence angle 
does not make any noticeable difference in the 

amplitude of the disturbances. The disturbances 
generated by the acoustic waves at 30 degrees 
incident angle initially follows the amplitude for 
the smaller incident angles and decreases 
downstream before it starts to grow again. In 
figure 20b , the eigenfunctions obtained from the 
simulation, linear stability and the continuous 
spectrum are plotted. 

Discussion and Conclusions 

The receptivity process induced by the 
interaction of acoustic disturbances at different 
incident angles over a blunted flat plate with and 
without an isolated roughness is numerically 
investigated. 

The steady field induced by the two and three- 
dimensional roughness is computed. The flow 
field induced by two-dimensional roughness 
exhibits different characteristics depending on 
the roughness heights. A smooth compression 
exists in the front of the roughness, a sharp and 
strong expansion occurs above the peak of the 
roughness and a strong compression takes place 
at the back of the roughness. At small roughness 
heights the flow passes smoothly over the 
roughness, at moderate heights the flow 
separates downstream of the roughness and at 
larger roughness heights the flow separates 
upstream and downstream of the roughness. The 
velocity defects is larger upstream of the 
roughness than that in the downstream. As 
expected the flow field induced by the three- 
dimensional roughness is weaker compared to 
the two-dimensional roughness. 

The interaction of the acoustic waves with a 
blunted flat plate investigation showed that the 
instability waves are generated very close to the 
leading edge. The amplitude of the disturbances 
generated is about five times of the free stream 
acoustic disturbances. It is also revealed that the 
small incident angle of the acoustic wave which 
are impinging the plate symmetrically from the 
above and below the plate does not make much 
difference in the amplitudes compared to that 
produced by a wave which is parallel to the 
plate. Computations have to be continued further 

10 
American Institute of Aeronautics and Astronautics 



AIAA 2003-3589 

a 

downstream and have to be performed with 
asymmetric acoustic disturbances to see the 
effects of incident angles in generating the 
unstable waves. It is also found that isolated 1975. 

Mack, L. M., “On the application of linear 
stability theory and the problem of supersonic 
boundary-layer transition,” AIAA J., 13, No. 3, 

roughness do not contribute much in generating 
unstable disturbances compared to that is 
generated by acoustic disturbances. Further 
computations have to be done with distributed 
roughness with different length scales to verify 

Saillard, M., and Sentenac, A., “Rigorous 
solutions for electromagnetic scattering from 
rough surfaces,” Waves in Random Media, Vol. 
11,2001, R103-R137. 

this conclusion. Shu, Chi-Wang, “ Essentially Non-Oscillatory 
and Weighted Essentially NOn-Oscillatory 
Schemes for Hyperbolic Conservation Laws,” 
NASA/CR-97-206253 and ICASE Report NO. 
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i(ax+by-(U-a)t) p =C a, exp + c.c 

M _=3.5 / 
Figure 1. Schematic diagram of interaction of acoustic waves 

with roughness on the surface. 
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Figure 2.  Grid distribution in the (x-y) and (z-y) planes. 
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Figure 3. Stability and N-Factor digrams for a flat-plate 
boundary layer. M_ = 3.5 T_ = 80' F. 
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h/S,=1/16 h/S,=1/2 

Figur 4. Contours of the density for flow over two-dimensional roughness 
elements of  heights h/6,, = 1/16, 1/2. 

h/S,= 1/16 

h/6,=1/4 h/S,= 112 

F i p r  5 .  Contours of the normal velocity and the streamline patterns tor 
flow over Gaussian two-dimensional roughness elements 
of heights NS = 1/16. 1/8, 1/4, I/?. 
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0 6  - 0 6  - 

Figure 6. Variation of the density at constant heights Y/6,, = 1 and 2 
for different roughness heights h/6, =1/16, 1/8, 1/4,1/2. 
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Figure 7. Modification to the U velocity profiles in the upstream 
and downstream locations due to the roughness elememt 
for roughness height h/6,, =1/16. 

u/u_ (U-UBLAJ~u~ 

Figure 8. U velocity profiles (a) and the modification to the Blasius 
velocity profiles (b) in the upstream and downstream locations 
due to the roughness element of height N6, =1/2. 
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Figur 9. Contours of the normal velocity (V) and the streamline patterns for l-low over 
Gaussian three-dimensional roughness elements of heights h/6 = 1/16. 1/8. 
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Figur 10. Contours of the spanwise velocity in the Z-Y plane at different sections 
(X-X,)/6=-2. 0, 7.5, 190 for flow over a three-dimensional roughness element 
of height h/6=1/16. 
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Figure 1 1 .  Schematic for the incident and the reflected 
acoustic field. 
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Figure 12. Variation of the wavenumber with the 
Reynolds number for the instability waves 
with p=O and .025. 

Figure 13. Variation of the reflection coefficient with the inclination angle 
at different Reynolds number for p=.O and .025. 
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Figure 14. Density perturbations obtained by solving 
the continuous spectrum problem. 
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Figur 15. Contours of the density for flow over a 

flat plate with a blunted leading edge at M=3.5 
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Figur 16. Contours of the normal velocity for flow over a flate plate 
with a blunted leading edge and an isolated roughness 
placed at X=l in., M=3.5. 

Figure 17. Mean density profiles at different X locations. 
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X (in.) X (in.) 
F'igur 18. Contours of  the unsteady density fluctuations due to the interaction 

of an acoustic wave with a flat plate with a hluntcd leading edge 
and a roughness. F=1.25E-4, incident angle 0.0 deg. M=3.5. 
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Figur 19. Maximum density fluctuation with and without 
roughncss.F=l.2SE-4. incident angle 0.Odeg. 
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Figure ?Oa. Eigenlunctions obtained from simulation and 
linear stability at X=.S. 1.. 3 inches. 0 dcg. 
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Figure 20b. Eigenfunctions obtained from simulation and 
linear stability at X= I.,  3 , 3.9 inches. 30 deg. 

Figure 2 1. Maximum density fluctuations at different 
incident angles 0. I0 and 30 degrees. 
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